Introduction into cost-benefit analysis CONTENT

INTRODUCTION

- The concept of "investment"
- Management steps

BASICS OF DISCOUNTING

FINANCIAL EVALUATION METHODS

- > Net present value method (NPV)
- ≻Internal rate of return (IRR)
- ≻Payback method

- Case -

Introduction into cost-benefit analysis CONTENT

VALUE ANALYSIS

- Definition of objectives
- > Weighting of objectives
- Quantification of values
- Case

CALCULATION OF ECONOMICS RATE OF RETURN

- Relevant costs
- Valuation of costs and benefits
- Case

Introduction into cost-benefit analysis CONTENT

SENSITIVITY ANALYSIS

RELEVANCE OF CBA FOR AN AUDITOR

Legal background
List of typical type of projects
What items can be verified ?
Possible conclusions for the auditor

Introduction into cost-benefit analysis INVESTMENT

DEFINITION

↓Investment:

the act of placing funds in other form capital or

to place funds in non-financial assets in order to achieve financial or non-financial return

Introduction into cost-benefit analysis INVESTMENT

- limited period of using investment
 technical life-time (economic life-time)
- induced financial flows
 - costs
 - revenues
- uncertainty

Introduction into cost-benefit analysis INVESTMENT

DECISION PROBLEM

- 1. Is an investment profitable ?
- 2. What is the most profitable alternative ?

MANAGEMENT STEPS

Step 1: Identification and description of the project

- Step 2: Ex-ante evaluation
- Step 3: Decision making process
- Step 4: Realisation of the investment
- Step 5: Ex-post evaluation

Basic of discounting

Principle : 1 EURO spent in the future has less value today**OR**1 EURO spent today has higher value in the future

<u>Definitions</u> :

Co = capital (present) value at the beginning of an investment period

Cn = capital value at the end of an investment period

i = discount rate

a o = initial investment

Rn = residual value of an investment after n-years

A = annuity

Calculation examples

- ▶ I. Investment amount 1.000
- $\succ \qquad \text{Interest rate } 0,05 \ (=5\%)$
- duration 3 years
- 1. Year end: 1.000 + 1.000 * 0.05 = 1.050 or 1.000 * (1 + 0.05) = 1.050
- 2. Year end: 1.050 + 1.050 * 0.05 = 1.102.5 or

1.000*(1+0.05)*(1+0.05) = $1.000*(1*0.05)^2 = 1.102.5$

3. Year end 1.102,5 + 1.102,5 * 0,05 = 1.157,63 or 1.000*(1+0,05)*(1+0,05)*(1+0,05)

 $1.000*(1+0.05)^3 = 1.157.63$

Or 1.000 * 1/*discount factor* (*t*=3 *I*=5) = 1.000 *1/0,864=1.157,4

Interpretation of result

The start capital of 1.000 is after 3 years 1.157,63 worth; the present value is increased in the future

Or an value of 1.157,63 end of three years from the present would have a worth at present of 1.000; the future value is less worth at present

1. Calculation of the end-value Cn

Factor : $r^n = (1 + i)^n$

 $\mathbf{C}_{\mathbf{n}} = \mathbf{C}_{\mathbf{0}} \mathbf{x} \mathbf{r}^{\mathbf{n}}$

2. Net value C₀ calculated by discounting

3. Net value of an annuity

4. Annuity for interest of i and payback C₀

5. Final value of C_n with an annuity of A

6. Annuity A of a final value Cn

How to proceed with the NPV methode

determine the available amount and the calculation rate (alternative rate for placing funds in the capital market)

- determine duration of the investment
- determine the expected cash flows (costs; revenues) and the residual value at the end of the periode
- Discount the flows to receive the NPV

Decision criteria for NPV

• An investment is profitable if the NPV ≥ 0

 With alternatives the investment with the biggest NPV ≥ 0 is preferred

How to proceed for calculating the IRR

- determine available capital, expected duration, estimate the cash flows over the time, estimate the residual value
- > One wants to get the rentability of the investement
- The internal rate is the rate, for which the NPV becomes 0.
- > Solutions: a) interpolation
 - b) graphical
 - c) approximation

Decision criteria for IRR

Profitable if the IRR of bigger than the calculation rate

for alternatives : the biggest IRR is the most profitable project

Pay-Back period

A project is profitable if the cumulated cash flow over the life-time exceeds the initial investment

If various investment alternatives : the project with the shortest pay-back period will be referred

Case 1

- 4 alternative investments with following data: each has amount of 20.000 to invest constant annual revenue (costs) for alternative one 18.000.-(6.000), two 20.000.-(10.000), three 12.000.-(4.000), and four 10.000.-(4.000)
- The alternatives have following life time in years: 3, 5, 7, 9
- \succ The calculation rate is 0,08 (8%)
- ≻ Find the NPVs, IIRs and payback periodes.

Basics about Value Analysis

- objective hierarchy
- utility function
- weighting of objectives
- transformation function
- nominale ordinale cardinale

Basics about Value Analysis

- Procedural steps:
 - definition of target criteria
 - weighting of target criteria
 - identification of subvalue/utility
 - Total value
 - Assessment of advantage

Basics about Value Analysis

- Road alternative 1 A1
- Road alternative 2 A 2
 - Time saving T weight g1 0,3
 - security S weight g2 0,4
 - location advantage L weight g3 0,3

Assumptions in Value Analysis

Value independent target criteria

value/utility is measurable (cardinal)

 only feasible alternatives are analysed (financial and economic upper and lower bounds are given)

Links of capital value and benefit value

- 1. $C_0 \ge 0$ and $N \ge N$
- **2.** $C_0 \leq 0$ and $N < \underline{N}$
- 3. $C_0 < 0$ and N > N
- 4. $C_0 > 0$ and $N < \underline{N}$

With C_0 : financial value of an investment

N : benefit (non-financial) value of an investment

 \underline{N} : subjective minimum of value to be achieved

Preparatory steps for the financial analysis

- ✓ Determine the project alternatives
- ✓ Assess the price for the initial investment
- ✓ Estimation of life-time
- Estimation of the periodical costs
- Estimation of the periodical revenues
- Estimation of the residual value
- Determination of the calculation rate

Decision criteria for IRR

Profitable if the IRR of bigger than the calculation rate

for alternatives : the biggest IRR is the most profitable project

Steps to calculate the IRR

1. <u>Classical approach</u>

compute NPV₁ with one calculation rate r1
if the RPV₁ is negative (positive) take another rate r₂, r3, ... until the NPV₂ becomes positive (negative)
make a graphical interpolation to find the intersection of the IRR which makes the NPV = 0 the rate which leads to NPV = 0 is the IRR

2. <u>Simplified approach</u>

IRR = r1 - NPV1 (r2 - r1) / (NPV2 - NPV1)

Some assumptions

Returned capital will be placed on the capital market on the calculation rate
 Unlimited credit for the calculation rate would be available all over the time

Some Aspects of E-CBA

- shadow prices
- opportunity costs
- what are labour costs?
- where to get data?

Checklist for audit - 1

- What type and at what stage do rules foresee CBA?
- Who did CBA?
- When was it done?
- Which methode?
- Which calculation rate and how justified?

Checklist for audit -2

- Justification for time horizon?
- Which costs taken into account?
- How was estimated revenue achieved?
- CBA well documented?
- All assumptions listed?
- CBA for economic and financial calculation?

Checklist for audit -3

- For economic CBA: are shadow prices and costs listed and which source were taken?
- Was a sensitivity analysis made? Which results?
- Were alternatives considered?
- Final decision corresponds to CBA result? If not why not?